Document Type : Original Article

Author

Girne american university

Abstract

Global warming is a well-known phenomenon, that increasing average of temperature. ‎Oceans are affected directly from this phenomenon with changing its abiotic and biotic ‎components. The Mediterranean Sea is known as the strongest warming sea in the world, ‎therefore, there is big concern on understanding the pattern in change and adaptation. The ‎Ligurian Sea is known with two main pelagic zones, which have distinctive characteristics ‎than each other. In this study, it is aimed to understand, characterize and describe inter- and ‎intra-annual properties of sea surface temperature and chlorophyll, as key biotic and abiotic ‎factors of marine environments, in the marine regions of the Ligurian Sea. Remotely sensed ‎data-sets of sea surface temperature and chlorophyll concentration between 2013 and 2019 ‎were used for this purpose. Results showed that the regions have significantly different ‎temperature and productivity within year. While high variation in temperature detected in ‎onshore region, productivity was less than twice in offshore region. Inter-annual analysis ‎showed trends showed similar patterns in the regions‎.

Keywords

Acker J. G.,  Leptoukh G. (2007). Online Analysis Enhances Use of NASA Earth Science Data. Eos, Transactions American Geophysical Union, 88(2), 14. https://doi.org/10.1029/2007EO020003

Astraldi M.,  Gasparini G. P. (1992).The seasonal characteristics of the circulation in the north Mediterranean basin and their relationship with the atmospheric- climatic conditions .Journal of Earth System Science, 97(C6), 9531–9540.

Bengil F. (2018). Inter- and intra-annual variations of the marine environment in Northern Cyprus. Fresenius Environ Bull 27(9):6284–6290

Bengil F.,  Mavruk S. (2019). Warming in Turkish seas: comparative multidecadal assessment. Turkish Journal of Fisheries and Aquatic Sciences, 19(1), 51–57. https://doi.org/10.4194/1303-2712-v19_1_06

Bengil F., Mavruk S. (2018). Bio-optical trends of seas around Turkey: An assessment of the spatial and temporal variability. Oceanologia, 60(4), 488–499. https://doi.org/10.1016/j.oceano.2018.03.004

Bengil F., McKee D., Beşiktepe Ş.T., Sanjuan Calzado V., Trees, C. (2016). A bio-optical model for integration into ecosystem models for the Ligurian Sea. Prog. Oceanogr. 149, 1–15. https://doi.org/http://dx.doi.org/10.1016/j.pocean.2016.10.007

Bianchi C.N., Azzola A., Bertolino M., Betti F., Bo, M., Cattaneo-Vietti R., Cocito S., Montefalcone M., Morri C., Oprandi A., Peirano A., Bavestrello G., (2019). Consequences of the marine climate and ecosystem shift of the 1980-90s on the Ligurian Sea biodiversity (NW Mediterranean). Eur. Zool. J. 86, 458–487. https://doi.org/10.1080/24750263.2019.1687765

Clementi E., Pistoia J., Escudier R., Delrosso D., Drudi M., Grandi A., Lecci R., Cretí S., Ciliberti S., Coppini G., Masina S., Pinardi N. (2019). Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents 2016- 2019) [Data set]. https://doi.org/10.25423/CMCC/MEDSEA_ ANALYSIS_FORECAST _PHY_006_013_EAS4

Colella S., Falcini F., Rinaldi E., Sammartino M., Santoleri R. (2016). Mediterranean Ocean Colour Chlorophyll Trends. PLoS One 11, e0155756. https://doi.org/10.1371/journal.pone.0155756

Doney S.C., Ruckelshaus M., Emmett Duffy J., Barry J.P., Chan F., English C.A., Galindo H.M., Grebmeier J.M., Hollowed A.B., Knowlton N., Polovina J., Rabalais N.N., Sydeman W.J., Talley L.D. (2012). Climate Change Impacts on Marine Ecosystems. Ann. Rev. Mar. Sci. 4, 11–37. https://doi.org/10.1146/annurev-marine-041911-111611

Esposito A., Manzella G. (1982). Current circulation in the Ligurian Sea. In J Nihoul (Ed.), Hydrodynamics of semi-enclosed seas, Elsevier Scientific Publishing Company, Amsterdam (pp. 187–203).

GCOS (2017). Indicators of Climate Change. GLOBAL CLIMATE OBSERVING SYSTEM of World Meteorological Organization. https://library.wmo.int/doc_num.php?explnum_id=3418.

Giorgi F. (2006). Climate change hot-spots. Geophysical Research Letters 33:L08707. DOI: 10.1029/2006GL025734.

Hordoir R., Meier H.E.M. (2012). Effect of climate change on the thermal stratification of the baltic sea: a sensitivity experiment. Clim Dyn 38, 1703–1713 (2012) doi:10.1007/s00382-011-1036-y

Lazzara L., Marchese C., Massi L., Nuccio C., Maselli F., Santini C., Maselli F. (2010). Sub-regional patterns of primary production annual cycle in the Ligurian and north Tyrrhenian seas, from satellite data. Italian Journal of Remote Sensing, 42(2), 87–102. http://doi.org/10.5721/ItJRS20104227.

Mantyka‐pringle C. S., Martin T. G., Rhodes J. R. (2012). Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta‐analysis. Glob Change Biol, 18: 1239-1252. doi:10.1111/j.1365-2486.2011.02593.x

Marty J. C., Chiavérini J., Pizay M. D., Avril B. (2002). Seasonal and inter- annual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991-1999).Deep-Sea Research Part II: Topical Studies in Oceanography, 49(11), 1965–1985. http://doi.org/10.1016/S0967-0645(02)00022-X.

Marty J.C., Chiavérini J. (2010). Hydrological changes in the Ligurian Sea (NW Mediterranean, DYFAMED site) during 1995–2007 and biogeochemical consequences. Biogeosciences 7, 2117–2128. https://doi.org/10.5194/bg-7-2117-2010

Niewiadomska K., Prieur L., Ortenzio F., Villefranche D., Curie-paris M.,  Oce L. (2008). Submesoscale physical-biogeochemical coupling across the Ligurian Current (Northwestern Mediterranean) using a bio-optical glider. Limnology and Oceanography, 53, 2210–2225.

Nykjaer L. (2009). Mediterranean Sea surface warming 1985–2006. Clim. Res. Clim Res 39, 11–17. https://doi.org/10.3354/cr00794

Pearson R. G., Dawson T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361–371.

Picco P., Cappelletti A., Sparnocchia S., Schiano M. E., Pensieri,S., Bozzano R. (2010). Upper layer current variability in the central Ligurian Sea. Ocean Science, 6(4), 825–836. http://doi.org/10.5194/os-6-825-2010.

Pisano A., Marullo S., Artale V., Falcini F., Yang C., Leonelli F. E., Santoleri R., Buongiorno Nardelli B. (2020). New Evidence Of Mediterranean Climate Change And Variability From Sea Surface Temperature Observations. Remote Sensing, 12(1). Https://Doi.Org/10.3390/Rs12010132.

Raick C., Delhez E. J. M., Soetaert K., Grégoire M. (2005). Study of the seasonal cycle of the biogeochemical processes in the Ligurian Sea using a 1d interdisciplinary model. Journal of Marine Systems, 55(3-4), 177–203. http://doi.org/10.1016/j.jmarsys.2004.09.005.

Schlitzer, R., Ocean Data View, https://odv.awi.de, 2020.

Skliris N., Sofianos S. S., Gkanasos A., Axaopoulos P., Mantziafou A., Vervatis V. (2011). Long-term sea surface temperature variability in the Aegean Sea. Advances in Oceanography and Limnology, 2(2), 125–139. https://doi.org/10.1080/19475721.2011.601325

Snelgrove P.V.R., Thrush S.F., Wall D.H., Norkko A. (2014). Real world biodiversity–ecosystem functioning: a seafloor perspective. Trends Ecol. Evol. 29, 398–405. https://doi.org/https://doi.org/10.1016/j.tree.2014.05.002

van de Poll, W.H., Kulk G., Timmermans K.R., Brussaard C.P.D., van der Woerd H.J., Kehoe M.J., Mojica K.D.A., Visser R.J.W., Rozema P.D., Buma A.G.J. (2013). Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean. Biogeosciences 10, 4227–4240. https://doi.org/10.5194/bg-10-4227-2013