Assessment of the toxic effects of the organophosphate insecticide Malathion (Cythion) on non-target earthworm growth

Authors

  • Yasir irfan Research scholar
  • Ahmad Shazad Assistant Professor, Deptt. Of Zoology
  • Asif Ahmed Kamgar Assistant Professor, Deptt. Of Zoology

DOI:

https://doi.org/10.5281/zenodo.17839330

Keywords:

Earthworm, Cythion, Concentration, Soil, Growth, Toxicity

Abstract

Earthworms are recognized as important bioindicators of chemical toxicity within soil ecosystems. This is significant because they serve as common prey for many terrestrial vertebrates, including birds and small mammals, and therefore play a key role in the biomagnification of various soil pollutants. The present study examined the concentration-dependent effects of the pesticide Cythion on earthworm growth. The experiment was conducted over a 60-day period using different concentrations of Cythion, starting from 3 mg/kg soil and increasing to 9 mg/kg. These concentrations produced non-significant effects on earthworm growth throughout the 60-day toxication period when compared with the control. A further increase from 9 mg/kg to 12 mg/kg soil likewise showed no significant difference in growth relative to the control during the same period. The results suggest that growth can be considered a sensitive parameter for evaluating the toxicity of Cythion in earthworms. Cythion demonstrated an impact on earthworm growth, resulting in a decrease in earthworm size.

References

Ali, A. S., & Naaz, I. (2013). Earthworm biomarkers: The new tools of environmental impact assessment. Bioscience Biotechnology Research Communications, 6, 163–169. https://doi.org/10.21786

Baishya, K. (2015). Impact of agrochemicals application on soil quality degradation—A review. ICSTM, 778–786. https://doi.org/10.2478/intox-2019-0008

Cao, X., Song, Y., Fan, S., Kai, J., & Yang, X. (2013). Optimization of ethoxyresorufin-O-deethylase determination in the microsomes of earthworms and its induction by PAH. Soil, Air, Water, 41, 1–5. https://doi.org/10.1002/clen.201300182

Elyamine, A. M., Afzal, J., Rana, M. S., Imran, M., Cai, M., & Hu, C. (2018). Phenanthrene mitigates cadmium toxicity in earthworms Eisenia fetida (epigeic species) and Aporrectodea caliginosa (endogeic species) in soil. International Journal of Environmental Research and Public Health, 15, 2384. https://doi.org/10.3390/ijerph15112384

Guo, Y., Zhang, X., Zhang, Y., Wu, D., McLaughlin, N., Zhang, S., Chen, X., Jia, S., & Liang, A. (2019). Temporal variation of earthworm impacts on soil organic carbon under different tillage systems. International Journal of Environmental Research and Public Health, 16, 1908. https://doi.org/10.3390/ijerph16111908

Hu, S. Q., Zhang, W., Li, J., Lin, K., & Ji, R. (2016). Antioxidant and gene expression responses of Eisenia fetida following repeated exposure to BDE209 and Pb in a soil–earthworm system. Science of the Total Environment, 556, 163–168. https://doi.org/10.1016/j.scitotenv.2016.02.194

Kavitha, V., Anandhan, R., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Almanaa, T. N., et al. (2019). Impact of pesticide monocrotophos on microbial populations and histology of intestine in the Indian earthworm Lampito mauritii (Kinberg). Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2019.103893

Markad, V. L., Gaupale, T. C., Bhargava, S., Kodam, K. M., & Ghole, V. S. (2015). Biomarker responses in the earthworm Dichogaster curgensis exposed to fly ash polluted soils. Ecotoxicology and Environmental Safety, 118, 62–70. https://doi.org/10.1016/j.ecoenv.2015.04.011

Parelho, C., Rodrigues, A., Bernardo, F., Carmo, B., Cunha, L., Poeta, P., & Garcia, P. (2018). Biological endpoints in earthworms (Amynthas gracilis) as tools for the ecotoxicity assessment of soils from livestock production systems. Ecological Indicators, 95, 984–990. https://doi.org/10.1016/j.ecolind.2017.09.045

Pass, D. A., Morgan, A. J., Read, D. S., Field, D., Weightman, A. J., & Kille, P. (2015). The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environmental Microbiology, 17, 1884–1896. https://doi.org/10.1111/1462-2920.12712

Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., & Vandenbulcke, F. (2014). Pesticides and earthworms: A review. Agronomy for Sustainable Development, 34, 199–228. https://doi.org/10.1007/s13593-013-0151-y

Pelosi, C., Joimel, S., & Makowski, D. (2013). Searching for a more sensitive earthworm species to be used in pesticide homologation tests—A meta-analysis. Chemosphere, 90, 895–900. https://doi.org/10.1016/j.chemosphere.2012.09.034

Rajashree, M., & Reddy, P. (2019). Effect of organophosphate pesticide “methyl parathion” and “phorate” on earthworm central nervous system. International Journal of Recent Trends in Science and Technology, 10, 483–485. https://doi.org/10.2478/intox-0008

Rakesh, S. (2014). Studies on the effect of carbofuran and salinity variations on the physiology of a brackish water oligochaete, Pontodrilus bermudensis (Beddard) (Ph.D. thesis). Andhra University, Visakhapatnam.

Roubalová, R., Dvořák, J., Procházková, P., Elhottová, D., Rossmann, P., Škanta, F., & Bilej, M. (2014). The effect of dibenzo-p-dioxin- and dibenzofuran-contaminated soil on the earthworm Eisenia andrei. Environmental Pollution, 193, 22–28. https://doi.org/10.1016/j.envpol.2014.05.026

Jadhav, S. S., & David, M. (2017). Effect of flubendiamide on morphology, avoidance behaviour and acetylcholinesterase activity in earthworm Eudrilus eugeniae. International Journal of Pharmacy and Pharmaceutical Sciences, 9, 233–238. https://doi.org/10.22159/ijpps.2017v9i9.20684

Sattibabu, D. (2013). Studies on the effect of the pesticide monocrotophos on the physiology of a brackish water oligochaete, Pontodrilus bermudensis Beddard in relation to salinity variations (Ph.D. thesis). Andhra University, Waltair, Visakhapatnam.

Sun, M., Chao, H., Zheng, X., Deng, S., Ye, M., & Hu, F. (2020). Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. Science of the Total Environment, 740, 140008. https://doi.org/10.1016/j.scitotenv.2020.140008

Thapar, A., Zalawadia, A., Pokharkar, O. V., & Satam, S. S. (2015). Classification of pesticides and its damaging effects: A review. Biolife, 4(1), 13–24. https://doi.org/10.17812/blj.2016.412

Wang, X., Zhou, J., Shen, M., Shen, J., Zhang, X., & Jin, Y. (2019). Chlorpyrifos exposure induces lipid metabolism disorder at the physiological and transcriptomic levels in larval zebrafish. Acta biochimica et biophysica Sinica, 51(9), 890-899.

Wang, K., Pang, S., Mu, X., Qi, S., Li, D., Cui, F., et al. (2015). Biological response of earthworm Eisenia fetida to five neonicotinoid insecticides. Chemosphere, 132, 120–126. https://doi.org/10.1016/j.chemosphere.2015.03.002

Ye, X., Xiong, K., & Liu, J. (2016). Comparative toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida. Journal of Hazardous Materials, 310, 82–88. https://doi.org/10.1016/j.jhazmat.2016.02.010

Downloads

Published

2025-12-06

How to Cite

Yasir irfan, Ahmad Shazad, & Kamgar, A. A. . (2025). Assessment of the toxic effects of the organophosphate insecticide Malathion (Cythion) on non-target earthworm growth. Scientific Reports in Life Sciences, 6(4), 25–38. https://doi.org/10.5281/zenodo.17839330